Summary: We show that for an elliptic curve E defined over a number field K, the group $E(\mathbb{A}_K)$ of points of E over the adele ring \mathbb{A}_K of K is a topological group that can be analyzed in terms of the Galois representation associated to the torsion points of E. An explicit description of $E(\mathbb{A}_K)$ is given, and we prove that for K of degree n, ‘almost all’ elliptic curves over K have an adelic point group topologically isomorphic to

$$(\mathbb{R}/\mathbb{Z})^n \times \hat{\mathbb{Z}}^n \times \prod_{m=1}^{\infty} \mathbb{Z}/m\mathbb{Z}.$$

We also show that there exist infinitely many elliptic curves over K having a different adelic point group.

MSC:

11G05 Elliptic curves over global fields
11G07 Elliptic curves over local fields
11F80 Galois representations

Keywords:

elliptic curves; adelic points; Galois representation

Full Text: DOI