A new characterization of the Haagerup property by actions on infinite measure spaces.

A locally compact, second-countable topological group G is said to have the Haagerup property if the constant function 1 on G can be approximated, uniformly on compact subsets, by a sequence of normalized, positive-definite, vanishing-at-infinity functions.

This paper gives a new dynamical characterization of the Haagerup property: G has the Haagerup property if and only if G acts by measure-preserving automorphisms of some measure space (Ω, B, μ), such that for all subsets $A, B \in \Omega$ of finite measure one has $\lim_{g \to \infty} \mu(gA \cap B) = 0$, and such that $L^\infty(\Omega)$ has an invariant mean. (For comparison, recall that G is amenable if and only if G admits a proper, regular-Borel-measure-preserving action on a locally compact space Ω such that $L^\infty(\Omega)$ has an invariant mean.)

If G admits such an action, then it is not hard to deduce from existing characterizations that G has the Haagerup property; all of the work here goes into proving the converse. The starting point is a characterization of the Haagerup property in terms of strongly mixing actions on probability spaces (cf. Theorem 2.2.2 in [P.-A. Cherix et al., Groups with the Haagerup property. Gromov’s a-T-menability. Basel: Birkhäuser (2001; Zbl 1030.43002)]). The presentation is clear and admirably detailed.

Reviewer: Tyrone Crisp (Orono)

MSC:

22D10 Unitary representations of locally compact groups
22D40 Ergodic theory on groups
28D05 Measure-preserving transformations

Keywords:

locally compact groups; unitary representations; Haagerup property

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.